Cyst Ventilation Heterogeneity and Alveolar Airspace Dilation as Early Disease Markers in Lymphangioleiomyomatosis

Laura L. Walkup1,2*, David J. Roach1*, Chase S. Hall3, Nishant Gupta4, Robert P. Thomen1‡, Zackary I. Cleveland1,2, Francis X. McCormack4, and Jason C. Woods1,2

1Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; 2Department of Pediatrics, 3Department of Radiology, and 4Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and 5Division of Pulmonary and Critical Care, University of Kansas Health System, Kansas City, Kansas

ORCID IDs: 0000-0002-5060-6401 (L.L.W.); 0000-0001-9112-1315 (N.G.).

Abstract

Rationale: Lymphangioleiomyomatosis (LAM) is a rare disease associated with cystic destruction of the pulmonary parenchyma and chronic respiratory failure, and there are trials underway to determine if early intervention can prevent disease progression. An imaging technique that is sensitive to early regional disease would therefore be valuable for patient care and clinical trials.

Objectives: We postulated that hyperpolarized 129Xe MRI would be sensitive to ventilation abnormalities and alveolar airspace dilation in patients with mild LAM disease and normal pulmonary function and that 129Xe MRI would reveal important features of cyst ventilation.

Methods: 129Xe ventilation and diffusion-weighted MR images were acquired in 22 patients with LAM during two breath-holds of hyperpolarized 129Xe. 129Xe ventilation defect percentage (VDP; percentage of voxels <60% of the mean whole-lung 129Xe MRI signal) and apparent diffusion coefficient (ADC), a measure of alveolar airspace size, were quantified and compared with pulmonary function test parameters with Spearman statistics. Sixteen patients with LAM had a recent, clinical chest computed tomography (CT) scan available, and cyst ventilation was assessed by thresholding cysts on the CT images and registration to the 129Xe ventilation images.

Results: Ventilation deficits were observed in all patients with LAM, including those with normal pulmonary function and few cysts, and the mean VDP was 19.2% (95% confidence interval [CI], 14.8–23.5%). 129Xe VDP was strongly correlated with forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) ratio ($r = -0.51, P = 0.02$) and diffusing capacity of the lung for carbon monoxide (DLCO) ($r = -0.60, P = 0.009$) but not with FEV1 ($r = -0.33, P = 0.13$), likely because of the sensitivity of 129Xe MRI to mild LAM disease in patients with normal FEV1. The mean ADC was 0.048 cm²/s (95% CI, 0.042–0.053 cm²/s). In many cases, ADC was elevated relative to previously reported values in adults, and ADC was correlated with FEV1, FEV1/FVC ratio, and DLCO ($P < 0.02$ for all). Co-registered 129Xe MRI and CT imaging revealed considerable ventilation heterogeneity within individual patients with LAM and across patients with similarly sized cysts.

Conclusions: 129Xe MRI provides a means to assess the complex regional ventilation and alveolar airspace size changes of LAM with high sensitivity and may be a clinically useful future tool for screening, managing patients, and measuring treatment efficacy.

Keywords: hyperpolarized xenon; magnetic resonance imaging; cyst; ventilation

Internet address: www.atsjournals.org

*Co–first authors.
‡Present address: Department of Radiology, University of Missouri, Columbia, Missouri.

Supported by the LAM Foundation, University of Cincinnati Center for Clinical & Translational Science & Training, and the Cincinnati Children’s Hospital Medical Center Research Foundation.

Author Contributions: Study concept and design: L.L.W., D.J.R., Z.I.C., N.G., F.X.M., and J.C.W.; acquisition, analysis, or interpretation of data: all authors; drafting of the manuscript: L.L.W., D.J.R., R.P.T., and J.C.W.; critical revision of the manuscript for important intellectual content: all authors; statistical analysis: L.L.W., D.J.R., C.S.H., and J.C.W.; study supervision: all authors.

Correspondence and requests for reprints should be addressed to Laura L. Walkup, Ph.D., Cincinnati Children’s Hospital Medical Center, Division of Pulmonary Medicine, 3333 Burnet Avenue, MLC 5033, Cincinnati, OH 45229. E-mail: Laura.Walkup@cchmc.org.

Copyright © 2019 by the American Thoracic Society
DOI: 10.1513/AnnalsATS.201812-880OC
Internet address: www.atsjournals.org

Received in original form December 11, 2018; accepted in final form April 8, 2019

Internet address: www.atsjournals.org

1008

AnnalsATS Volume 16 Number 8 | August 2019

Internet address: www.atsjournals.org

1008

AnnalsATS Volume 16 Number 8 | August 2019

Internet address: www.atsjournals.org

1008

AnnalsATS Volume 16 Number 8 | August 2019

Internet address: www.atsjournals.org
Lymphangioleiomyomatosis (LAM), a rare lung disease primarily affecting women of childbearing age, is characterized by abnormal smooth muscle–like cell infiltration leading to cystic parenchymal remodeling and progressive decline in pulmonary function. The currently proposed mechanisms of cyst formation range from ball-valve obstruction and overinflation of small airways to remodeling due to LAM cell–mediated matrix metalloproteinase release or lymphangiogenic remodeling. LAM manifests clinically as increased airflow obstruction and diminished pulmonary function, which is primarily assessed using the parameters of forced expiratory capacity in one second (FEV1) and diffusing capacity of the lung for carbon monoxide (DlCO). The presence of characteristic diffuse thin-walled cysts on high-resolution chest X-ray computed tomography (CT) imaging plays a central role in establishing the diagnosis of LAM (1–3).

CT imaging methods have been developed to quantify the degree of cystic change in LAM in much the same way as the widely accepted — 950 Hounsfield unit (HU) threshold has been used to quantify emphysema on inspiratory CT (4), and, indeed, thresholds of — 950 HU (5) and — 900 HU (6) have been shown to correlate with clinical measures of LAM severity as assessed by pulmonary function tests (PFTs). Additional studies have supported the use of quantitative CT imaging techniques as novel biomarkers for monitoring LAM progression, as well as assessing treatment response and mechanism of therapeutic action (7–9); however, the enthusiasm for CT imaging as a longitudinal disease-monitoring tool is dampened because of the risks associated with cumulative ionizing radiation exposure. Furthermore, CT scans do not provide functional or regional information about the ventilation of LAM cysts, which impacts dead-space ventilation and likely relates to the risk of pneumothorax. Ventilation/perfusion (V/Q) scanning has some limited utility in that regard, and in a study of patients with LAM, a "speckling pattern" in the ventilation images was attributed to accumulation of radiotracer within the LAM cysts (10). However, V/Q scintigraphy is associated with the risks of ionizing radiation, is only semi-quantitative, offers limited sensitivity and tomographic resolution, and cannot provide useful information about ventilation of individual LAM cysts.

In recent years, many of the technological challenges that have limited magnetic resonance imaging (MRI) of the lungs have been overcome, and MRI has emerged as a "new," nonionizing modality for pulmonary imaging. In addition to remarkable advances in conventional 1H MRI using ultra-short echo-time techniques (11–16), hyperpolarized 129Xe MRI has been shown to be a powerful tool not only for identification of the earliest manifestations of airflow obstruction and ventilation deficits but also for the assessment of alveolar airspace size (17) and gas-exchange dynamics (18). In this technique, the MR signal comes not from the lung parenchyma but from magnetized 129Xe gas, which is inhaled and imaged during a brief breath-hold (18, 19). Over the past 30 years, hyperpolarized 129Xe MRI has been used to spatially resolve and quantify lung ventilation in multiple airway disorders, including cystic fibrosis (20–23), asthma (23, 24), and chronic obstructive pulmonary disease (COPD) (23, 25, 26), and has been shown to be more sensitive to early lung disease than spirometry.

We hypothesized that 129Xe MRI would be sensitive to early cystic lung changes in patients with LAM with normal spirometry and that co-registered 129Xe MRI and CT imaging would reveal important structure–function features of cysts in LAM. Advantages of this novel hyperpolarized-gas technique include spatial resolution of ventilation that is not possible with PFTs, absence of ionizing radiation exposure, sensitivity to the earliest manifestations of airflow obstruction, status as the only available method to measure airspace dimensions in vivo, and potential as an effort-independent biomarker of disease progression and treatment response. Portions of this work have been previously presented as abstracts (27, 28).

Methods

Inclusion Criteria

U.S. Food and Drug Administration investigational new drug (IND 123577) and local institutional review board approvals were obtained for all 129Xe MRI studies. Twenty-two patients with LAM (Table 1) were recruited from the University of Cincinnati Pulmonary Clinics and the 2016 Rare Lung Disease Consortium meeting in Cincinnati, Ohio, and signed informed consent. Inclusion criteria included a definite diagnosis of LAM on the basis of American Thoracic Society/Japanese Respiratory Society Criteria (3). Patients with a resting baseline pulse oximetry <95%, positive pregnancy test, or standard MRI exclusions (e.g., MR-incompatible metal implants) were excluded. All MR imaging was performed on a Philips 3T Achieva MRI scanner (Philips Healthcare) during a single study visit of approximately 60 minutes.

PFTs including spirometry and DlCO from within 1 year of the MRI visit were collected from patient medical records. If recent spirometry was unavailable, subjects were asked to complete spirometry on the same day as the MRI scanning was done. For the co-registered 129Xe MRI and CT imaging investigation of cyst size and ventilation, archival CT images that had been obtained in the course of standard clinical care were used, if they had been acquired within 1 year of the MRI.

Hyperpolarized 129Xe MRI

A home-built, single-channel, saddle coil tuned to 35.3 MHz was used to acquire all 129Xe MR images (29). Hyperpolarized 129Xe MRI gas (86% 129Xe-enriched; Linde) was prepared using a commercial polarizer (Polarean 9810) and polarized to approximately 20%. Subjects were instructed to exhale to functional residual capacity before inhaling the hyperpolarized 129Xe gas mixture from a Tedlar bag (Jensen Inert Products) equipped with 3/8-inch tubing (Tygon; Saint-Gobain) and mouthpiece (Epsilon Medical Devices). 129Xe ventilation and diffusion-weighted images were acquired during two separate breath-holds of up to 1 L of 129Xe gas. Gas was delivered in the presence of a medical professional, who monitored heart rate and oxygenation throughout the protocol. 129Xe ventilation images were acquired for all 22 patients using a gradient echo scan during a single breath-hold of 500 ml of hyperpolarized 129Xe diluted to 1 L with N2 gas. MRI parameters included repetition time, 8 milliseconds; echo time, 4 milliseconds; flip angle, 10° to 12°; 10 to 15 slices; voxel size = 3 × 3 × 5 mm3; scan duration = 16 seconds. To measure alveolar airspace size, 129Xe diffusion-weighted images were acquired in 19 patients with LAM during a second breath-hold of 1 L of hyperpolarized 129Xe gas using a 5 b-value.
(0.625, 12.5, 18.75, and 25 s/cm²), bipolar diffusion-sensitizing gradient echo sequence (repetition time, 6.1 milliseconds; echo time, 2.9 milliseconds; flip angle, 5°–10°; diffusion time [Δ], 3.5 milliseconds; lobe duration [Δ], 3.1 milliseconds; 4–8 slices; voxel size = 3–7 × 3–7 × 15–30 mm³; scan duration ≤ 16 s).

Image Analysis and Statistics

129Xe images were processed using custom software in MATLAB (Mathworks) and R processing language. 129Xe ventilation images were manually segmented based on 1H images, and deficits in ventilation were identified using a threshold of <60% of the mean whole-lung 129Xe signal and expressed as a ventilation defect percentage (VDP) as previously reported (20). VDPs are expressed as mean ± SD. Using the 129Xe diffusion-weighted images, maps of coarsely apparent diffusion coefficient (ADC), a histologically validated surrogate for alveolar airspace size, were generated via a voxel-by-voxel decaying exponential fit of the 5 b-value data.

The regional 129Xe ventilation of LAM cysts was investigated using open-source ITK-Snap (http://www.itksnap.org/) [30] and Advanced Normalization Tool (ANTS; http://stnava.github.io/ANTS/) software packages. Binary masks of 129Xe ventilation images were registered to binary CT masks of the corresponding subject via ANTs image registration algorithm (antsRegistrationSyN [31]). After the generation of the registered mask, an image transform was applied to warp the ventilation intensity image to the registered mask to obtain the registered ventilation image. A watershed algorithm was applied to the cyst labels, which were obtained from CT images (<−850 HU to −950 HU), via MATLAB to differentiate individual cysts from large areas of cystic lung, where multiple cysts in close proximity coalesce. The watershed cyst labels were then applied to the registered ventilation image. Because of partial-volume effects, cysts <4 voxels in size were eliminated, and the 129Xe signal intensity of cysts within the 4 to 20 voxel size range were scaled according to:

\[
Xe\text{Intensity}_{\text{Scaled}} = \frac{Xe\text{Intensity}_{\text{Original}}}{1 - (1.3t - C_s)}
\]

where t is defined as the slice thickness of the hyperpolarized 129Xe ventilation image (i.e., 15 mm) and C_s is defined as the individual cyst volume derived from CT imaging. Finally, cysts were classified into three categories: poor ventilation (<60% of the mean 129Xe signal intensity), average ventilation (≈60%), or hyperventilated (≈200%). The ventilated cyst volumes were expressed as the percentage of the total lung volume. In addition, individual cyst size was quantified, binned into four different sizes (0 to <0.5 ml, 0.5 to <5 ml, 5 to <50 ml, and ≥50 ml) and presented as a percentage of total lung volume.

Means and 95% confidence intervals (CIs) are reported for group variables. Linear regression and Spearman correlation coefficients (r) were used to describe the relationships between variables; r ≥ 0.5 was considered strong correlation. Two-sided t tests were used to compare 129Xe VDP and ADC differences between patients with early disease (i.e., FEV_1 or DLCO < 80% predicted) and those with moderate to advanced disease (<80% predicted FEV_1 or DLCO). A P value ≤ 0.05 was considered significant for all comparisons.

Results

Subjects and 129Xe MRI Results

Table 1 describes the patient demographics of the 22 patients with LAM studied, whose average age was 49 years (95% CI, 44–55 yr) and mean FEV_1 was 78% (95% CI, 68–90%; range, 33–129%). All subjects tolerated the MRI procedure well, and no related adverse events were reported. Figure 1 highlights 129Xe ventilation heterogeneity and ADC maps in three representative LAM cases across a spectrum of disease severity. 129Xe ventilation patterns were heterogeneous and varied widely among subjects. Ventilation deficits were observed in all 22 patients with LAM, with a mean 129Xe VDP of 19.2% (95% CI, 14.8–23.5%), as compared with ~5% to 7% VDP in a healthy young subject, although slight increases are associated with normal aging (32). 129Xe ADC, which measures the movement of 129Xe atoms...
within the airspace and thus can serve as a surrogate measurement of alveolar airspace size, also varied highly across subjects \((n=19)\), with a mean whole-lung value of \(0.048 \text{ cm}^2/\text{s}\) (95% CI, 0.042–0.053 cm\(^2/\text{s}\)). Most subjects, including those with normal PFTs, had \(^{129}\)Xe ADC values that were elevated relative to what has been previously reported in healthy adults (\(0.036 \text{ cm}^2/\text{s}\) [17]), suggesting alveolar airspace enlargement even in mild LAM. In more advanced LAM cases, the observed \(^{129}\)Xe ADC was similar to values reported for patients with COPD (0.079 cm\(^2/\text{s}\) [33]), consistent with advanced cystic lung destruction and airspace dilation. \(^{129}\)Xe VDP was strongly correlated with \(^{129}\)Xe ADC (Figure 2A; \(r = 0.60, P = 0.007\)), supporting the notion that alveolar airspace dilation impedes regional ventilation. \(^{129}\)Xe VDP correlated with the percentage of hyperventilated lung (Figure 2B; \(r = 0.86, P < 0.001\)), suggesting there may be focal regions of hyperventilation to compensate for airflow obstruction.

Correlations with PFTs

The relationships between \(^{129}\)Xe VDP and PFT measurements are shown in Figure 3. \(^{129}\)Xe VDP was strongly correlated with FEV\(_1\) (\(r = -0.51, P = 0.02\)) and DL\(_{\text{CO}}\) (\(r = -0.60, P = 0.009\)), but not with FEV\(_1\) (\(r = -0.33, P = 0.13\)). There was wide individual variation in \(^{129}\)Xe VDP across patients with similar PFT-defined disease severity, and, importantly, ventilation deficits were detected in patients with LAM with normal FEV\(_1\) (Figure 3A). \(^{129}\)Xe ADC was strongly correlated with FEV\(_1\) (\(r = -0.51, P = 0.02\)), FEV\(_1\)/FVC ratio, (\(r = -0.61, P = 0.005\)), and DL\(_{\text{CO}}\) (\(r = -0.74, P < 0.001\)).

Sensitivity of \(^{129}\)Xe MRI to Early LAM Disease

Twelve of the 22 patients had mild LAM, with FEV\(_1\) \(\geq 80\%\) predicted (Table 1; Subjects 01 through 12), and the group

Figure 1. \(^{129}\)Xe ventilation and apparent diffusion coefficient (ADC) maps in three representative lymphangioleiomyomatosis cases demonstrating the spectrum of disease severity investigated. The \(^{129}\)Xe ventilation defect percentage values for subjects 05 (top row), 11 (middle row), and 18 (bottom row) were 14.8%, 15%, and 24.3%, respectively. A single slice of the ADC maps for each of these subjects is shown in the right column. \(^{129}\)Xe ADC, calculated from diffusion-weighted imaging, is a surrogate measurement of alveolar airspace size, and the color bar shows increasing ADC value and thus airspace size. The \(^{129}\)Xe ADC values were 0.040 ± 0.016, 0.048 ± 0.022, and 0.066 ± 0.027 cm\(^2/\text{s}\), compared with approximately 0.036 cm\(^2/\text{s}\) for age-matched healthy adults (17). FEV\(_1\) = forced expiratory volume in 1 second.

Figure 2. \(^{129}\)Xe ventilation defect percentage (VDP) plotted against \(^{129}\)Xe apparent diffusion coefficient (ADC) (A; \(r = 0.60, P = 0.007\)) and the percentage of hyperventilated lung (B; \(r = 0.86, P < 0.001\)).
mean FEV\textsubscript{1} was 98\% (95\% CI, 91–106\%). Ten patients had moderate to advanced disease, with FEV\textsubscript{1} < 80\% predicted (group mean, 55\%; 95\% CI, 45–65\%). Although there was no statistical difference in the 129Xe VDP of patients with mild disease (mean VDP, 15.3\%; 95\% CI, 11.4–19.1\%) and those with moderate to advanced disease (mean VDP, 23.8\%; 95\% CI, 16.1–31.5\%; \(P = 0.07 \)), this is likely due to the superior sensitivity of 129Xe MRI to early airway obstruction, as supported by the several patients with normal FEV\textsubscript{1} (>80\% predicted) yet large 129Xe VDP (Figure 3A).

Patients with moderate to advanced disease had an elevated 129Xe ADC (mean ADC, 0.053 cm2/s; 95\% CI, 0.045–0.060 cm2/s) compared with patients with mild disease (mean ADC, 0.042 cm2/s; 95\% CI, 0.036–0.047 cm2/s; \(P = 0.03 \)), consistent with a greater degree of airspace dilation in subjects with moderate to advanced disease.

When considering disease severity with respect to DL\textsubscript{CO}, 18 of the 22 patients had available DL\textsubscript{CO}, and of those 18, 4 patients (Table 1; subjects 01, 03, 08, and 09) had mild disease per the DL\textsubscript{CO} > 80\% predicted definition (group mean, 90\%; 95\% CI, 78–103\%). The mean DL\textsubscript{CO} for patients with moderate to advanced disease was 57\% (95\% CI, 47–67\%). Patients with moderate to advanced disease per DL\textsubscript{CO} had an elevated 129Xe VDP (mean VDP, 21.7\%; 95\% CI, 15.3–28.0\%) as compared with those with mild disease (mean VDP, 11.9\%; 95\% CI, 7.8–16.0\%; \(P = 0.02 \)). There was no significant difference in 129Xe ADC between the patients with mild LAM (mean ADC, 0.038 cm2/s; 95\% CI, 0.027–0.048 cm2/s) and those with moderate to advance disease (mean ADC, 0.050 cm2/s; 95\% CI, 0.043–0.057 cm2/s; \(P = 0.12 \)).

Figure 3. Comparison of 129Xe ventilation defect percentage (VDP; A, B, and C) and apparent diffusion coefficient (ADC; D, E, and F) with forced expiratory volume in 1 second (FEV\textsubscript{1}) % predicted (A and D), FEV\textsubscript{1}/forced vital capacity (FVC) ratio (B and E), and diffusing capacity of the lung for carbon monoxide (DL\textsubscript{CO}) % predicted (C and F). DL\textsubscript{CO} comparisons included the 18 patients with available data. 129Xe VDP was not correlated with FEV\textsubscript{1} (\(r = 0.33, P = 0.13 \)) but was correlated with DL\textsubscript{CO} (\(r = 0.60, P = 0.009 \)). 129Xe ADC was correlated with FEV\textsubscript{1} (\(r = 0.51, P = 0.02 \), FEV\textsubscript{1}/FVC ratio (\(r = 0.51, P = 0.02 \), DL\textsubscript{CO} (\(r = 0.74, P < 0.001 \)).

129Xe VDP was correlated with FEV\textsubscript{1} (\(r = 0.51, P = 0.02 \), FEV\textsubscript{1}/FVC ratio (\(r = 0.51, P = 0.02 \), DL\textsubscript{CO} (\(r = 0.74, P < 0.001 \)).
Cyst Ventilation with Co-registered 129Xe MRI and CT

Sixteen of the patients with LAM had recent (<1 yr) clinical CT scans available for analysis; volume percentage of cystic lung from CT scan is listed in Table 1 for these patients. The mean volume of cystic lung was 645 ml (95% CI, 269–1,021 ml) for this group, which corresponded to an average of 15.9% (95% CI, 8.0–23.9%) of total lung volume. As Figure 4 demonstrates, subjects with a lower FEV$_1$ generally had a greater percentage of cystic lung (i.e., <900 HU threshold in CT scan) and a greater volume of larger cysts (e.g., cysts between 5–50 ml and >50 ml in size, as seen in subjects 17–21). Cystic lung volume percentage from CT scan was strongly correlated with FEV$_1$ ($r = 0.58$, $P = 0.02$) and ADC ($r = 0.71$, $P = 0.007$), LAM cyst ventilation was complex and heterogeneous, and there was wide variability in the percentage 129Xe ventilation within the cysts. For example, in subject 03 (Figure 5, top row), two small focal cysts are measured, and although they both have “average” 129Xe ventilation per analysis, the measured ventilation within the cysts is very different: 108% versus 61% of the normalized 129Xe signal. In subject 16 (Figure 5, middle row), cysts 5 and 6 are relatively larger yet appear to ventilate better than other smaller cysts in the same 129Xe image. In the images shown, subjects 16 and 17 (Figure 5, middle and bottom rows) each have an approximately 13-ml cyst identified by CT scan (cyst 3 in each case); the 129Xe ventilation within that cyst for subject 16 is 95%, but it is only 49% for subject 17. LAM cyst ventilation was heterogeneous not only within an individual patient but also across similarly sized cysts in different subjects with LAM, and these complex regional differences in cyst ventilation can be quantified using hyperpolarized 129Xe MRI.

Discussion

The most important findings from this study are that LAM cyst ventilation is heterogeneous and that in patients with mild disease (i.e., either FEV$_1$ or DL$_{CO}$ equal to or exceeding 80% predicted), hyperpolarized 129Xe MRI was sensitive to ventilation deficits and alveolar airspace dilation. The co-registered 129Xe MRI and CT imaging analysis showed that cyst ventilation is complex and heterogeneous, even across similarly sized cysts. In total, these results support the regional sensitivity of 129Xe MRI techniques to ventilation deficits and alveolar-microstructural changes in cystic lung disease due to LAM. We conclude that greater cyst volume percentage is associated with lower FEV$_1$ and a greater percentage of cysts with poor ventilation.

There are several limitations of the study and of the 129Xe MRI technique. There was no age-matched control group presented in this study; thus, the 129Xe VDP and ADC comparisons are made to previously reported values. The 129Xe images have a larger voxel size relative to CT scans and are susceptible to partial-volume averaging, especially for smaller, isolated cysts, which can lead to overestimation of cyst ventilation. Indeed, many of the relatively smaller cysts in the CT images showed average 129Xe ventilation when corrected for slice thickness. In the future, 129Xe images with higher spatial resolution acquired with 3D spiral techniques could mitigate this. Furthermore, ADC can only be measured in regions of the lung that receive enough gas to make the measurement; thus larger, focal nonventilated cysts primarily observed in the advanced cases were excluded from the ADC measurement. However, inclusion of these regions would only further increase...
the average ADC values. Region-of-interest analysis of the noncystic regions revealed that many 129Xe ADC values were on par with what was expected for a given subject’s age (17). Nonetheless, the global average alveolar airspace enlargement observed across the spectrum of LAM disease severity was an interesting finding and demonstrates the utility of 129Xe MRI, specifically ADC, as a noninvasive method to assess alveolar airspace size in vivo.

These results have several important implications for the future. The finding that patients with normal spirometry have detectable ventilation and airspace-dilation abnormalities on 129Xe MRI suggests that this modality might be a useful screening test to detect early disease. This is especially true for the tuberous sclerosis complex (TSC) population, which is at a particularly increased risk for the development of LAM (34). Current TSC guidelines recommend screening for LAM by a high-resolution CT scan in women ≥18 years of age (35), and serial follow-up or screening scans every 3 to 5 years. This recommendation is associated with a significant cumulative ionizing radiation burden, and the availability of MRI techniques that can identify early cystic change and follow disease progression could serve to mitigate this risk. Early 129Xe MRI assessment of disease burden in patients with LAM with and without TSC could facilitate treatment decisions regarding initiation of mammalian target of rapamycin (mTOR) inhibitor therapy in patients with normal PFTs. A recent analysis of National Heart, Lung, and Blood Institute LAM Registry data has shown that quantitative assessment of disease severity as measured by the degree of cyst profusion on CT imaging is associated with the future rate of decline of FEV$_1$ (36), further supporting the potential role of imaging-based assessments as prognostic biomarkers and decision-making tools. The relative ventilation of cysts may also relate to rapid decline and is the subject of an ongoing study.

129Xe MRI has potential as a longitudinal disease-monitoring tool to assess the trajectory of disease progression and response to treatment. Although the correlation of 129Xe MRI findings with PFTs shown here is promising, the value of longitudinal 129Xe MRI monitoring needs to be assessed in prospective studies, as is currently being conducted in a substudy of the MILED (Multicenter Interventional LAM Early Disease) trial (NCT03150914, www.clinicaltrials.gov). Once validated, 129Xe MRI could provide a sensitive, noninvasive, quantitative, and largely effort-independent disease monitoring tool that is free from the risks associated with ionizing radiation.

There is a critical need to develop novel remission-inducing treatment regimens in LAM and to develop sensitive biomarkers to serve as surrogate end points in clinical trials. FEV$_1$ change, the primary end point

Figure 5
Co-registered 129Xe ventilation magnetic resonance imaging and computed tomography (CT) analysis to investigate regional lymphangioleiomyomatosis cyst ventilation. For each subject, a single cyst labeled CT image (i.e., –900 Hounsfield unit threshold), a CT-registered 129Xe ventilation image, and a cyst-labeled 129Xe ventilation image are shown identifying which cysts have poor ventilation (red), average ventilation (blue), or hyperventilation (yellow), with arrows pointing to individually numbered cysts for each subject. The fourth column shows cyst size and normalized percentage of 129Xe ventilation for each of the numbered cysts in the CT and 129Xe images. VDP = ventilation defect percentage.

<table>
<thead>
<tr>
<th>Cyst #</th>
<th>Size (mL)</th>
<th>Normalized % 129Xe Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.73</td>
<td>108%</td>
</tr>
<tr>
<td>2</td>
<td>1.16</td>
<td>61%</td>
</tr>
<tr>
<td>1</td>
<td>3.4</td>
<td>79%</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>13.2</td>
<td>95%</td>
</tr>
<tr>
<td>4</td>
<td>14.3</td>
<td>83%</td>
</tr>
<tr>
<td>5</td>
<td>18.8</td>
<td>106%</td>
</tr>
<tr>
<td>6</td>
<td>25.2</td>
<td>104%</td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>50%</td>
</tr>
<tr>
<td>2</td>
<td>10.5</td>
<td>28%</td>
</tr>
<tr>
<td>3</td>
<td>13.9</td>
<td>49%</td>
</tr>
<tr>
<td>4</td>
<td>38.3</td>
<td>87%</td>
</tr>
<tr>
<td>5</td>
<td>42.4</td>
<td>110%</td>
</tr>
<tr>
<td>6</td>
<td>53.0</td>
<td>8%</td>
</tr>
</tbody>
</table>

Individual Cyst Ventilation

<table>
<thead>
<tr>
<th>Cyst #</th>
<th>Size (mL)</th>
<th>Normalized % 129Xe Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.73</td>
<td>108%</td>
</tr>
<tr>
<td>2</td>
<td>1.16</td>
<td>61%</td>
</tr>
<tr>
<td>1</td>
<td>3.4</td>
<td>79%</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>13.2</td>
<td>95%</td>
</tr>
<tr>
<td>4</td>
<td>14.3</td>
<td>83%</td>
</tr>
<tr>
<td>5</td>
<td>18.8</td>
<td>106%</td>
</tr>
<tr>
<td>6</td>
<td>25.2</td>
<td>104%</td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>50%</td>
</tr>
<tr>
<td>2</td>
<td>10.5</td>
<td>28%</td>
</tr>
<tr>
<td>3</td>
<td>13.9</td>
<td>49%</td>
</tr>
<tr>
<td>4</td>
<td>38.3</td>
<td>87%</td>
</tr>
<tr>
<td>5</td>
<td>42.4</td>
<td>110%</td>
</tr>
<tr>
<td>6</td>
<td>53.0</td>
<td>8%</td>
</tr>
</tbody>
</table>
in the MILES trial (37), suffers from multiple limitations, most notably the high degree of inter- and intratest variability that can result from inconsistent patient effort and technician-dependent test quality (38). Moreover, with the advent of sirolimus as an effective suppressive therapy, 129Xe MRI could prove useful for demonstrating an incremental lung ventilation effect of candidate therapies in sirolimus combination trials—an endpoint that may not be feasible using FEV1, given the large sample sizes that would be required. Development of sensitive quantitative imaging biomarkers such as 129Xe MRI that can reliably detect and measure treatment effects, especially in patients with mild disease and normal PFTs, may accelerate future trials and facilitate optimal patient management in LAM.

Conclusions
In this first report of 129Xe MRI in LAM, ventilation deficits and alveolar airspace dilation were noted in patients with LAM with normal spirometry, supporting 129Xe MRI as a sensitive method for detecting the earliest physiological manifestations of LAM. There was considerable regional ventilation heterogeneity even across patients with similarly sized cysts. Quantitative imaging techniques such as 129Xe MRI that reduce ionizing radiation exposure allow for more frequent imaging and have the potential to serve as end points for clinical trials, which would be beneficial in LAM and other rare lung disease populations where patient numbers are limited.

Author disclosures are available with the text of this article at www.atsjournals.org.

References

